42 research outputs found

    JaxoDraw: A graphical user interface for drawing Feynman diagrams

    Full text link
    JaxoDraw is a Feynman graph plotting tool written in Java. It has a complete graphical user interface that allows all actions to be carried out via mouse click-and-drag operations in a WYSIWYG fashion. Graphs may be exported to postscript/EPS format and can be saved in XML files to be used in later sessions. One of the main features of JaxoDraw is the possibility to produce LaTeX code that may be used to generate graphics output, thus combining the powers of TeX/LaTeX with those of a modern day drawing program. With JaxoDraw it becomes possible to draw even complicated Feynman diagrams with just a few mouse clicks, without the knowledge of any programming language.Comment: 15 pages, no figures; typos corrected; visit the JaxoDraw home page at http://altair.ific.uv.es/~JaxoDraw/home.htm

    Relationship of the 3P0 decay model to other strong decay models

    Get PDF
    The 3P0 decay model is briefly reviewed. Possible improvements, partly motivated by the examination of a microscopic description of a quark - anti-quark pair creation, are considered. They can provide support for the one-body character of the model which, otherwise, is difficult to justify. To some extent, they point to a boost effect that most descriptions of processes involving a pair creation cannot account for.Comment: 4 pages, 2 .eps figures; Contribution to the BARYONS 2002 Conference, 3.-8. March 2002, JLab, US

    Comparison of Form Factors Calculated with Different Expressions for the Boost Transformation

    Full text link
    The effect of different boost expressions is considered for the calculation of the ground-state form factor of a two-body system made of scalar particles interacting via the exchange of a scalar boson. The aim is to provide an uncertainty range on methods employed in implementing these effects as well as an insight on their relevance when an ``exact'' calculation is possible. Using a wave function corresponding to a mass operator that has the appropriate properties to construct the generators of the Poincar\'{e} algebra in the framework of relativistic quantum mechanics, form factors are calculated using the boost transformations pertinent to the instant, front and point forms of this approach. Moderately and strongly bound systems are considered with masses of the exchanged boson taken as zero, 0.15 times the constituent mass mm, and infinity. In the first and last cases, a comparison with ``exact'' calculations is made (Wick-Cutkosky model and Feynman triangle diagram). Results with a Galilean boost are also given. Momentum transfers up to Q2=100m2Q^2=100 m^2 are considered. Emphasis is put on the contribution of the single-particle current, as usually done. It is found that the present point-form calculations of form factors strongly deviate from all the other ones, requiring large contributions from two-body currents. Different implementations of the point-form approach, where the role of these two-body currents would be less important, are sketched.Comment: Version as accepted for publication, added 6 pages of explanatorial materia

    "Point-form" estimate of the pion form factor revisited

    Full text link
    The pion form factor calculation in the ``point-form'' of relativistic quantum mechanics is re-considered. Particular attention is given to the relation between the momentum of the system and the momentum transfer as well as to the quark current.Comment: 3 pages, 2 figures, contribution to the 17th International IUAP Conference on Few-Body Problems in Physics, 5-10 June 2003, Durham (USA

    Hadronic Decays of N and \Delta Resonances in a Chiral Quark Model

    Full text link
    \pi and \eta decay modes of light baryon resonances are investigated within a chiral quark model whose hyperfine interaction is based on Goldstone-boson exchange. For the decay mechanism a modified version of the 3P0 model is employed. Our primary aim is to provide a further test of the recently proposed Goldstone-boson-exchange constituent quark model. We compare the predictions for \pi and \eta decay widths with experiment and also with results from a traditional one-gluon-exchange constituent quark model. The differences between nonrelativistic and semirelativistic versions of the constituent quark models are outlined. We also discuss the sensitivity of the results on the parametrization of the meson wave function entering the 3P0 model.Comment: 17 pages, 6 eps figure

    JaxoDraw: A graphical user interface for drawing Feynman diagrams. Version 2.0 release notes

    Full text link
    A new version of the Feynman graph plotting tool JaxoDraw is presented. Version 2.0 is a fundamental re-write of most of the JaxoDraw core and some functionalities, in particular importing graphs, are not backward-compatible with the 1.x branch. The most prominent new features include: drawing of Bezier curves for all particle modes, on-the-fly update of edited objects, multiple undo/redo functionality, the addition of a plugin infrastructure, and a general improved memory performance. A new LaTeX style file is presented that has been written specifically on top of the original axodraw.sty to meet the needs of this this new version.Comment: 17 pages, 1 figur

    Spectator-model operators in point-form relativistic quantum mechanics

    Full text link
    We address the construction of transition operators for electromagnetic, weak, and hadronic reactions of relativistic few-quark systems along the spectator model. While the problem is of relevance for all forms of relativistic quantum mechanics, we specifically adhere to the point form, since it preserves the spectator character of the corresponding transition operators in any reference frame. The conditions imposed on the construction of point-form spectator-model operators are discussed and their implications are exemplified for mesonic decays of baryon resonances within a relativistic constituent quark model.Comment: 10 pages, 4 figures, updated version accepted for publication in Europ. Phys. J.

    A note on the QCD evolution of generalized form factors

    Full text link
    Generalized form factors of hadrons are objects appearing in moments of the generalized parton distributions. Their leading-order DGLAP-ERBL QCD evolution is exceedingly simple and the solution is given in terms of matrix triangular structures of linear equations where the coefficients are the evolution ratios. We point out that this solution has a practical importance in analyses where the generalized form factors are basic objects, e.g., the lattice-gauge studies or models. It also displays general features of their evolution.Comment: 4 page

    Effective boost and "point-form" approach

    Get PDF
    Triangle Feynman diagrams can be considered as describing form factors of states bound by a zero-range interaction. These form factors are calculated for scalar particles and compared to point-form and non-relativistic results. By examining the expressions of the complete calculation in different frames, we obtain an effective boost transformation which can be compared to the relativistic kinematical one underlying the present point-form calculations, as well as to the Galilean boost. The analytic expressions obtained in this simple model allow a qualitative check of certain results obtained in similar studies. In particular, a mismatch is pointed out between recent practical applications of the point-form approach and the one originally proposed by Dirac.Comment: revised version as accepted for publicatio

    Generalized parton distributions of the pion in chiral quark models and their QCD evolution

    Full text link
    We evaluate Generalized Parton Distributions of the pion in two chiral quark models: the Spectral Quark Model and the Nambu-Jona-Lasinio model with a Pauli-Villars regularization. We proceed by the evaluation of double distributions through the use of a manifestly covariant calculation based on the alpha representation of propagators. As a result polynomiality is incorporated automatically and calculations become simple. In addition, positivity and normalization constraints, sum rules and soft pion theorems are fulfilled. We obtain explicit formulas, holding at the low-energy quark-model scale. The expressions exhibit no factorization in the t-dependence. The QCD evolution of those parton distributions is carried out to experimentally or lattice accessible scales. We argue for the need of evolution by comparing the Parton Distribution Function and the Parton Distribution Amplitude of the pion to the available experimental and lattice data, and confirm that the quark-model scale is low, about 320 MeV.Comment: 25 pages, 15 figures, added discussion of the end-point behavio
    corecore